Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Crit Care ; 27(1): 234, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20242141

ABSTRACT

Angiopoietin-2 (Ang-2) is associated with vascular endothelial injury and permeability in the acute respiratory distress syndrome (ARDS) and sepsis. Elevated circulating Ang-2 levels may identify critically ill patients with distinct pathobiology amenable to targeted therapy. We hypothesized that plasma Ang-2 measured shortly after hospitalization among patients with sepsis would be associated with the development of ARDS and poor clinical outcomes. To test this hypothesis, we measured plasma Ang-2 in a cohort of 757 patients with sepsis, including 267 with ARDS, enrolled in the emergency department or early in their ICU course before the COVID-19 pandemic. Multivariable models were used to test the association of Ang-2 with the development of ARDS and 30-day morality. We found that early plasma Ang-2 in sepsis was associated with higher baseline severity of illness, the development of ARDS, and mortality risk. The association between Ang-2 and mortality was strongest among patients with ARDS and sepsis as compared to those with sepsis alone (OR 1.81 vs. 1.52 per log Ang-2 increase). These findings might inform models testing patient risk prediction and strengthen the evidence for Ang-2 as an appealing biomarker for patient selection for novel therapeutic agents to target vascular injury in sepsis and ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , Prognosis , Angiopoietin-2 , Critical Illness , Pandemics
2.
BMJ ; 370: m3379, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-2316359

ABSTRACT

UPDATES: This is the twelfth version (eleventh update) of the living guideline, replacing earlier versions (available as data supplements). New recommendations will be published as updates to this guideline. CLINICAL QUESTION: What is the role of drugs in the treatment of patients with covid-19? CONTEXT: The evidence base for therapeutics for covid-19 is evolving with numerous randomised controlled trials (RCTs) recently completed and under way. The emerging SARS-CoV-2 variants (such as omicron) and subvariants are also changing the role of therapeutics. This update provides updated recommendations for remdesivir, addresses the use of combination therapy with corticosteroids, interleukin-6 (IL-6) receptor blockers, and janus kinase (JAK) inhibitors in patients with severe or critical covid-19, and modifies previous recommendations for the neutralising monoclonal antibodies sotrovimab and casirivimab-imdevimab in patients with non-severe covid-19. NEW OR UPDATED RECOMMENDATIONS: • Remdesivir: a conditional recommendation for its use in patients with severe covid-19; and a conditional recommendation against its use in patients with critical covid-19. • Concomitant use of IL-6 receptor blockers (tocilizumab or sarilumab) and the JAK inhibitor baricitinib: these drugs may now be combined, in addition to corticosteroids, in patients with severe or critical covid-19. • Sotrovimab and casirivimab-imdevimab: strong recommendations against their use in patients with covid-19, replacing the previous conditional recommendations for their use. UNDERSTANDING THE NEW RECOMMENDATIONS: When moving from new evidence to updated recommendations, the Guideline Development Group (GDG) considered a combination of evidence assessing relative benefits and harms, values and preferences, and feasibility issues. For remdesivir, new trial data were added to a previous subgroup analysis and provided sufficiently trustworthy evidence to demonstrate benefits in patients with severe covid-19, but not critical covid-19. The GDG considered benefits of remdesivir to be modest and of moderate certainty for key outcomes such as mortality and mechanical ventilation, resulting in a conditional recommendation. For baricitinib, the GDG considered clinical trial evidence (RECOVERY) demonstrating reduced risk of death in patients already receiving corticosteroids and IL-6 receptor blockers. The GDG acknowledged that the clinical trials were not representative of the world population and that the risk-benefit balance may be less advantageous, particularly in patients who are immunosuppressed at higher risk of opportunistic infections (such as serious fungal, viral, or bacteria), those already deteriorating where less aggressive or stepwise addition of immunosuppressive medications may be preferred, and in areas where certain pathogens such as HIV or tuberculosis, are of concern. The panel anticipated that there would be situations where clinicians may opt for less aggressive immunosuppressive therapy or to combine medications in a stepwise fashion in patients who are deteriorating. The decision to combine the medications will depend on their availability, and the treating clinician's perception of the risk-benefit balance associated with combination immunosuppressive therapy, particularly in patient populations at risk of opportunistic infections who may have been under-represented in clinical trials. When making a strong recommendation against the use of monoclonal antibodies for patients with covid-19, the GDG considered in vitro neutralisation data demonstrating that sotrovimab and casirivimab-imdevimab evaluated in clinical trials have meaningfully reduced neutralisation activity of the currently circulating variants of SARS-CoV-2 and their subvariants. There was consensus among the panel that the absence of in vitro neutralisation activity strongly suggests absence of clinical effectiveness of these monoclonal antibodies. However, there was also consensus regarding the need for clinical trial evidence in order to confirm clinical efficacy of new monoclonal antibodies that reliably neutralise the circulating strains in vitro. Whether emerging new variants and subvariants might be susceptible to sotrovimab, casirivimab-imdevimab, or other anti-SARS-CoV-2 monoclonal antibodies cannot be predicted. PRIOR RECOMMENDATIONS: • Recommended for patients with severe or critical covid-19­strong recommendations for systemic corticosteroids; IL-6 receptor blockers (tocilizumab or sarilumab) in combination with corticosteroids; and baricitinib as an alternative to IL-6 receptor blockers, in combination with corticosteroids. • Recommended for patients with non-severe covid-19 at highest risk of hospitalisation­a strong recommendation for nirmatrelvir/ritonavir; conditional recommendations for molnupiravir and remdesivir. • Not recommended for patients with non-severe covid-19­a conditional recommendation against systemic corticosteroids; a strong recommendation against convalescent plasma; a recommendation against fluvoxamine, except in the context of a clinical trial; and a strong recommendation against colchicine. • Not recommended for patients with non-severe covid-19 at low risk of hospitalisation­a conditional recommendation against nirmatrelvir/ritonavir. • Not recommended for patients with severe or critical covid-19­a recommendation against convalescent plasma except in the context of a clinical trial; and a conditional recommendation against the JAK inhibitors ruxolitinib and tofacitinib. • Not recommended, regardless of covid-19 disease severity­a strong recommendations against hydroxychloroquine and against lopinavir/ritonavir; and a recommendation against ivermectin except in the context of a clinical trial. ABOUT THIS GUIDELINE: This living guideline from the World Health Organization (WHO) incorporates new evidence to dynamically update recommendations for covid-19 therapeutics. The GDG typically evaluates a therapy when the WHO judges sufficient evidence is available to make a recommendation. While the GDG takes an individual patient perspective in making recommendations, it also considers resource implications, acceptability, feasibility, equity, and human rights. This guideline was developed according to standards and methods for trustworthy guidelines, making use of an innovative process to achieve efficiency in dynamic updating of recommendations. The methods are aligned with the WHO Handbook for Guideline Development and according to a pre-approved protocol (planning proposal) by the Guideline Review Committee (GRC). A box at the end of the article outlines key methodological aspects of the guideline process. MAGIC Evidence Ecosystem Foundation provides methodological support, including the coordination of living systematic reviews with network meta-analyses to inform the recommendations. The full version of the guideline is available online in MAGICapp and in PDF, with a summary version here in The BMJ. These formats should facilitate adaptation, which is strongly encouraged by WHO to contextualise recommendations in a healthcare system to maximise impact. Future recommendations: Recommendations on anticoagulation are planned for the next update to this guideline.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , COVID-19 , Humans , Pandemics , SARS-CoV-2 , World Health Organization , COVID-19 Drug Treatment
3.
Crit Care ; 27(1): 90, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2300870

ABSTRACT

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .


Subject(s)
Communicable Diseases , Emergency Medicine , Humans , Critical Care , Communicable Diseases/diagnosis , Critical Illness/therapy , Intensive Care Units
4.
Eur J Intern Med ; 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2240696
5.
Respir Res ; 23(1): 354, 2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2196285

ABSTRACT

Auto-antibodies (Abs) to type I interferons (IFNs) are found in up to 25% of patients with severe COVID-19, and are implicated in disease pathogenesis. It has remained unknown, however, whether type I IFN auto-Abs are unique to COVID-19, or are also found in other types of severe respiratory illnesses. To address this, we studied a prospective cohort of 284 adults with acute respiratory failure due to causes other than COVID-19. We measured type I IFN auto-Abs by radio ligand binding assay and screened for respiratory viruses using clinical PCR and metagenomic sequencing. Three patients (1.1%) tested positive for type I IFN auto-Abs, and each had a different underlying clinical presentation. Of the 35 patients found to have viral infections, only one patient tested positive for type I IFN auto-Abs. Together, our data suggest that type I IFN auto-Abs are uncommon in critically ill patients with acute respiratory failure due to causes other than COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Adult , Autoantibodies , Prevalence , Prospective Studies , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/epidemiology
6.
Chest ; 162(1): 256-264, 2022 07.
Article in English | MEDLINE | ID: covidwho-2158581

ABSTRACT

BACKGROUND: In 2019, the United States experienced a nationwide outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). More than one-half of these patients required admission to an ICU. RESEARCH QUESTION: What are the recent literature and expert opinions which inform the diagnosis and management of patients with critical illness with EVALI? STUDY DESIGN AND METHODS: To synthesize information critical to pulmonary/critical care specialists in the care of patients with EVALI, this study examined data available from patients hospitalized with EVALI between August 2019 and January 2020; reviewed the clinical course and critical care experience with those patients admitted to the ICU; and compiled opinion of national experts. RESULTS: Of the 2,708 patients with confirmed or probable EVALI requiring hospitalization as of January 21, 2020, a total of 1,604 (59.2%) had data available on ICU admission; of these, 705 (44.0%) were admitted to the ICU and are included in this analysis. The majority of ICU patients required respiratory support (88.5%) and in severe cases required intubation (36.1%) or extracorporeal membrane oxygenation (6.7%). The majority (93.0%) of these ICU patients survived to discharge. Review of the clinical course and expert opinion provided insight into: imaging; considerations for bronchoscopy; medical treatment, including use of empiric antibiotics, antiviral agents, and corticosteroids; respiratory support, including considerations for intubation, positioning maneuvers, and extracorporeal membrane oxygenation; and patient outcomes. INTERPRETATION: Review of the clinical course of patients with EVALI requiring ICU admission and compilation of expert opinion provided critical insight into pulmonary/critical care-specific considerations for this patient population. Because a large proportion of patients hospitalized with EVALI required ICU admission, it is important to remain prepared to care for patients with EVALI.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Vaping , Critical Care , Humans , Lung , Lung Injury/chemically induced , Lung Injury/epidemiology , United States/epidemiology , Vaping/adverse effects
7.
EBioMedicine ; 85: 104295, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2104816

ABSTRACT

BACKGROUND: A comparison of pneumonias due to SARS-CoV-2 and influenza, in terms of clinical course and predictors of outcomes, might inform prognosis and resource management. We aimed to compare clinical course and outcome predictors in SARS-CoV-2 and influenza pneumonia using multi-state modelling and supervised machine learning on clinical data among hospitalised patients. METHODS: This multicenter retrospective cohort study of patients hospitalised with SARS-CoV-2 (March-December 2020) or influenza (Jan 2015-March 2020) pneumonia had the composite of hospital mortality and hospice discharge as the primary outcome. Multi-state models compared differences in oxygenation/ventilatory utilisation between pneumonias longitudinally throughout hospitalisation. Differences in predictors of outcome were modelled using supervised machine learning classifiers. FINDINGS: Among 2,529 hospitalisations with SARS-CoV-2 and 2,256 with influenza pneumonia, the primary outcome occurred in 21% and 9%, respectively. Multi-state models differentiated oxygen requirement progression between viruses, with SARS-CoV-2 manifesting rapidly-escalating early hypoxemia. Highly contributory classifier variables for the primary outcome differed substantially between viruses. INTERPRETATION: SARS-CoV-2 and influenza pneumonia differ in presentation, hospital course, and outcome predictors. These pathogen-specific differential responses in viral pneumonias suggest distinct management approaches should be investigated. FUNDING: This project was supported by NIH/NCATS UL1 TR002345, NIH/NCATS KL2 TR002346 (PGL), the Doris Duke Charitable Foundation grant 2015215 (PGL), NIH/NHLBI R35 HL140026 (CSC), and a Big Ideas Award from the BJC HealthCare and Washington University School of Medicine Healthcare Innovation Lab and NIH/NIGMS R35 GM142992 (PS).


Subject(s)
COVID-19 , Influenza, Human , Pneumonia, Viral , Humans , SARS-CoV-2 , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Retrospective Studies , Hospitals
8.
NEJM Evidence ; 1(11):1-16, 2022.
Article in English | CINAHL | ID: covidwho-2096905

ABSTRACT

Leligdowicz et al. consider the history and future of immunomodulating therapies in sepsis and ARDS, including ARDS due to Covid-19, and remark on the larger challenge of clinical research on therapies for syndromes with profound clinical and biologic heterogeneity.

9.
EBioMedicine ; 83: 104208, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035962

ABSTRACT

BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.


Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin , Post-Acute COVID-19 Syndrome
10.
Crit Care ; 26(1): 278, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2029727

ABSTRACT

BACKGROUND: Studies quantifying SARS-CoV-2 have focused on upper respiratory tract or plasma viral RNA with inconsistent association with clinical outcomes. The association between plasma viral antigen levels and clinical outcomes has not been previously studied. Our aim was to investigate the relationship between plasma SARS-CoV-2 nucleocapsid antigen (N-antigen) concentration and both markers of host response and clinical outcomes. METHODS: SARS-CoV-2 N-antigen concentrations were measured in the first study plasma sample (D0), collected within 72 h of hospital admission, from 256 subjects admitted between March 2020 and August 2021 in a prospective observational cohort of hospitalized patients with COVID-19. The rank correlations between plasma N-antigen and plasma biomarkers of tissue damage, coagulation, and inflammation were assessed. Multiple ordinal regression was used to test the association between enrollment N-antigen plasma concentration and the primary outcome of clinical deterioration at one week as measured by a modified World Health Organization (WHO) ordinal scale. Multiple logistic regression was used to test the association between enrollment plasma N-antigen concentration and the secondary outcomes of ICU admission, mechanical ventilation at 28 days, and death at 28 days. The prognostic discrimination of an externally derived "high antigen" cutoff of N-antigen ≥ 1000 pg/mL was also tested. RESULTS: N-antigen on D0 was detectable in 84% of study participants. Plasma N-antigen levels significantly correlated with RAGE (r = 0.61), IL-10 (r = 0.59), and IP-10 (r = 0.59, adjusted p = 0.01 for all correlations). For the primary outcome of clinical status at one week, each 500 pg/mL increase in plasma N-antigen level was associated with an adjusted OR of 1.05 (95% CI 1.03-1.08) for worse WHO ordinal status. D0 plasma N-antigen ≥ 1000 pg/mL was 77% sensitive and 59% specific (AUROC 0.68) with a positive predictive value of 23% and a negative predictive value of 93% for a worse WHO ordinal scale at day 7 compared to baseline. D0 N-antigen concentration was independently associated with ICU admission and 28-day mechanical ventilation, but not with death at 28 days. CONCLUSIONS: Plasma N-antigen levels are readily measured and provide important insight into the pathogenesis and prognosis of COVID-19. The measurement of N-antigen levels early in-hospital course may improve risk stratification, especially for identifying patients who are unlikely to progress to severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid , RNA, Viral
11.
Immunity ; 55(7): 1284-1298.e3, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1945246

ABSTRACT

While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.


Subject(s)
COVID-19 , Pneumonia , Disease Progression , Humans , SARS-CoV-2
12.
Nat Med ; 28(6): 1141-1148, 2022 06.
Article in English | MEDLINE | ID: covidwho-1900513

ABSTRACT

Research and practice in critical care medicine have long been defined by syndromes, which, despite being clinically recognizable entities, are, in fact, loose amalgams of heterogeneous states that may respond differently to therapy. Mounting translational evidence-supported by research on respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-suggests that the current syndrome-based framework of critical illness should be reconsidered. Here we discuss recent findings from basic science and clinical research in critical care and explore how these might inform a new conceptual model of critical illness. De-emphasizing syndromes, we focus on the underlying biological changes that underpin critical illness states and that may be amenable to treatment. We hypothesize that such an approach will accelerate critical care research, leading to a richer understanding of the pathobiology of critical illness and of the key determinants of patient outcomes. This, in turn, will support the design of more effective clinical trials and inform a more precise and more effective practice at the bedside.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Care , Critical Illness , Humans , Syndrome
13.
Am J Respir Crit Care Med ; 205(12): 1382-1390, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1892012

ABSTRACT

The role of extracorporeal membrane oxygenation (ECMO) in the management of severe acute respiratory failure, including acute respiratory distress syndrome, has become better defined in recent years in light of emerging high-quality evidence and technological advances. Use of ECMO has consequently increased throughout many parts of the world. The coronavirus disease (COVID-19) pandemic, however, has highlighted deficiencies in organizational capacity, research capability, knowledge sharing, and resource use. Although governments, medical societies, hospital systems, and clinicians were collectively unprepared for the scope of this pandemic, the use of ECMO, a highly resource-intensive and specialized form of life support, presented specific logistical and ethical challenges. As the pandemic has evolved, there has been greater collaboration in the use of ECMO across centers and regions, together with more robust data reporting through international registries and observational studies. Nevertheless, centralization of ECMO capacity is lacking in many regions of the world, and equitable use of ECMO resources remains uneven. There are no widely available mechanisms to conduct large-scale, rigorous clinical trials in real time. In this critical care review, we outline lessons learned during COVID-19 and prior respiratory pandemics in which ECMO was used, and we describe how we might apply these lessons going forward, both during the ongoing COVID-19 pandemic and in the future.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Pandemics , SARS-CoV-2
14.
BMJ Open ; 12(6): e060664, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1879135

ABSTRACT

INTRODUCTION: The COVID-19 pandemic brought an urgent need to discover novel effective therapeutics for patients hospitalised with severe COVID-19. The Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis (ISPY COVID-19 trial) was designed and implemented in early 2020 to evaluate investigational agents rapidly and simultaneously on a phase 2 adaptive platform. This manuscript outlines the design, rationale, implementation and challenges of the ISPY COVID-19 trial during the first phase of trial activity from April 2020 until December 2021. METHODS AND ANALYSIS: The ISPY COVID-19 Trial is a multicentre open-label phase 2 platform trial in the USA designed to evaluate therapeutics that may have a large effect on improving outcomes from severe COVID-19. The ISPY COVID-19 Trial network includes academic and community hospitals with significant geographical diversity across the country. Enrolled patients are randomised to receive one of up to four investigational agents or a control and are evaluated for a family of two primary outcomes-time to recovery and mortality. The statistical design uses a Bayesian model with 'stopping' and 'graduation' criteria designed to efficiently discard ineffective therapies and graduate promising agents for definitive efficacy trials. Each investigational agent arm enrols to a maximum of 125 patients per arm and is compared with concurrent controls. As of December 2021, 11 investigational agent arms had been activated, and 8 arms were complete. Enrolment and adaptation of the trial design are ongoing. ETHICS AND DISSEMINATION: ISPY COVID-19 operates under a central institutional review board via Wake Forest School of Medicine IRB00066805. Data generated from this trial will be reported in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER: NCT04488081.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Bayes Theorem , Humans , Pandemics , SARS-CoV-2 , Treatment Outcome
15.
Am J Respir Crit Care Med ; 206(8): 961-972, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-1874929

ABSTRACT

Rationale: Autopsy and biomarker studies suggest that endotheliopathy contributes to coronavirus disease (COVID-19)-associated acute respiratory distress syndrome. However, the effects of COVID-19 on the lung endothelium are not well defined. We hypothesized that the lung endotheliopathy of COVID-19 is caused by circulating host factors and direct endothelial infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives: We aimed to determine the effects of SARS-CoV-2 or sera from patients with COVID-19 on the permeability and inflammatory activation of lung microvascular endothelial cells. Methods: Human lung microvascular endothelial cells were treated with live SARS-CoV-2; inactivated viral particles; or sera from patients with COVID-19, patients without COVID-19, and healthy volunteers. Permeability was determined by measuring transendothelial resistance to electrical current flow, where decreased resistance signifies increased permeability. Inflammatory mediators were quantified in culture supernatants. Endothelial biomarkers were quantified in patient sera. Measurements and Main Results: Viral PCR confirmed that SARS-CoV-2 enters and replicates in endothelial cells. Live SARS-CoV-2, but not dead virus or spike protein, induces endothelial permeability and secretion of plasminogen activator inhibitor 1 and vascular endothelial growth factor. There was substantial variability in the effects of SARS-CoV-2 on endothelial cells from different donors. Sera from patients with COVID-19 induced endothelial permeability, which correlated with disease severity. Serum levels of endothelial activation and injury biomarkers were increased in patients with COVID-19 and correlated with severity of illness. Conclusions: SARS-CoV-2 infects and dysregulates endothelial cell functions. Circulating factors in patients with COVID-19 also induce endothelial cell dysfunction. Our data point to roles for both systemic factors acting on lung endothelial cells and viral infection of endothelial cells in COVID-19-associated endotheliopathy.


Subject(s)
COVID-19 , Vascular Diseases , Biomarkers/metabolism , Endothelial Cells/metabolism , Humans , Inflammation Mediators/metabolism , Lung , Plasminogen Activator Inhibitor 1/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vascular Diseases/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Crit Care ; 25(1): 404, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1745432

ABSTRACT

Identifying new effective treatments for the acute respiratory distress syndrome (ARDS), including COVID-19 ARDS, remains a challenge. The field of ARDS investigation is moving increasingly toward innovative approaches such as the personalization of therapy to biological and clinical sub-phenotypes. Additionally, there is growing recognition of the importance of the global context to identify effective ARDS treatments. This review highlights emerging opportunities and continued challenges for personalizing therapy for ARDS, from identifying treatable traits to innovative clinical trial design and recognition of patient-level factors as the field of critical care investigation moves forward into the twenty-first century.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome/therapy , COVID-19/complications , Clinical Trials as Topic , Humans , Respiratory Distress Syndrome/virology
17.
Curr Opin Crit Care ; 28(1): 1-8, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1629669

ABSTRACT

PURPOSE OF REVIEW: Decades of research in acute respiratory distress syndrome (ARDS) have led to few interventions that impact clinical outcomes. The pandemic of patients with ARDS due to the novel SARS-CoV-2 infection has stressed the need for more effective therapies in ARDS. Phenotyping may enable successful trials and precision therapeutics in this patient population. RECENT FINDINGS: Clinical phenotypes that group patients by shared cause, time-course or radiographic presentation are of prognostic value, but their use is limited by misclassification. Physiological phenotypes, including the P/F ratio, ventilatory ratio and dead space fraction, predict poor outcomes but can rapidly change, making them unstable over time. Biologic phenotypes have prognostic value with composite clinical and biomarker sub-phenotypes additionally impacting treatment response but are yet to be prospectively validated. SUMMARY: Although much progress has been made in ARDS phenotyping, implementation of precision medicine practices will depend on conducting phenotype-aware trials using rapid point of care assays or machine learning algorithms. Omics studies will enhance our understanding of biologic determinants of clinical outcomes in ARDS sub-phenotypes. Whether biologic ARDS sub-phenotypes are specific to this syndrome or rather more broadly identify endotypes of critical illness remains to be determined.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Pandemics , Phenotype , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
18.
Lancet Respir Med ; 10(1): 107-120, 2022 01.
Article in English | MEDLINE | ID: covidwho-1591647

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome , COVID-19 , Humans , Respiratory Distress Syndrome/therapy
19.
Am J Respir Crit Care Med ; 204(11): 1274-1285, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1546620

ABSTRACT

Rationale: Two distinct subphenotypes have been identified in acute respiratory distress syndrome (ARDS), but the presence of subgroups in ARDS associated with coronavirus disease (COVID-19) is unknown. Objectives: To identify clinically relevant, novel subgroups in COVID-19-related ARDS and compare them with previously described ARDS subphenotypes. Methods: Eligible participants were adults with COVID-19 and ARDS at Columbia University Irving Medical Center. Latent class analysis was used to identify subgroups with baseline clinical, respiratory, and laboratory data serving as partitioning variables. A previously developed machine learning model was used to classify patients as the hypoinflammatory and hyperinflammatory subphenotypes. Baseline characteristics and clinical outcomes were compared between subgroups. Heterogeneity of treatment effect for corticosteroid use in subgroups was tested. Measurements and Main Results: From March 2, 2020, to April 30, 2020, 483 patients with COVID-19-related ARDS met study criteria. A two-class latent class analysis model best fit the population (P = 0.0075). Class 2 (23%) had higher proinflammatory markers, troponin, creatinine, and lactate, lower bicarbonate, and lower blood pressure than class 1 (77%). Ninety-day mortality was higher in class 2 versus class 1 (75% vs. 48%; P < 0.0001). Considerable overlap was observed between these subgroups and ARDS subphenotypes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR cycle threshold was associated with mortality in the hypoinflammatory but not the hyperinflammatory phenotype. Heterogeneity of treatment effect to corticosteroids was observed (P = 0.0295), with improved mortality in the hyperinflammatory phenotype and worse mortality in the hypoinflammatory phenotype, with the caveat that corticosteroid treatment was not randomized. Conclusions: We identified two COVID-19-related ARDS subgroups with differential outcomes, similar to previously described ARDS subphenotypes. SARS-CoV-2 PCR cycle threshold had differential value for predicting mortality in the subphenotypes. The subphenotypes had differential treatment responses to corticosteroids.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19 Drug Treatment , Latent Class Analysis , Respiratory Distress Syndrome/drug therapy , Aged , COVID-19/complications , Cohort Studies , Female , Humans , Male , Middle Aged , Respiratory Distress Syndrome/classification , Respiratory Distress Syndrome/etiology , Retrospective Studies
20.
EClinicalMedicine ; 40: 101099, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1385454

ABSTRACT

BACKGROUND: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. METHODS: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). FINDINGS: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. INTERPRETATION: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. FUNDING: Funded by Roche Sequencing Solutions, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL